

Past Papers Nat 5 Chemistry

2016 Marking Scheme

Grade	Mark R	equired	% andidates askinying anada	
Awarded	(/100)	%	% candidates achieving grade	
Α	72+	72%	34.1%	
В	61+	61%	23.3%	
С	51+	51%	18.7%	
D	46+	46%	7.4%	
No award	<46	<46%	16.5%	

Section:	Multiple Cha	oice	Extended A	nswer	Assignment	•
Average Mark:	12.4	/20	36.3	/60	14.3	/20

2016 National 5 Chemistry Marking Scheme					
MC Qu	Answer	% Pupils Correct	Reasoning		
1	D		\blacksquare A products of dissolving should be aqueous solutions of $Na^+(aq)$ and $Cl^-(aq)$ ions \blacksquare B correct formula for water should be $H_2O(1)$ as water does not dissolve in water \blacksquare C $NaCl(aq)$ does not exist as $NaCl(s)$ splits up its lattice into $Na^+(aq) + Cl^-(aq)$ ions \blacksquare D $NaCl(s)$ dissolves in $H_2O(1)$ to form the ions $Na^+(aq) + Cl^-(aq)$		
2	C	79	 ★A temperature would have to be above 40°C to have reaction time less than 10s ★B temperature would have to be between 30-40°C to have time between 10-20s ★C temperature is less than 30°C .: reaction time must be more than 20s concentration is more than 0.1 .: reaction time must be less than 60s ★D concentration would have to be 0.1mol l-1 and temperature below 20°C 		
3	D	48	☑A electrons have negligible mass so removal of electron has no effect on mass no. ☑B no change to the number of protons so atomic number is unchanged ☑C no change to the number of protons so charge of nucleus is unchanged ☑D atom X (e.g. Na 2,8,1) becomes ion X ⁺ (e.g. Na ⁻² ,8) loses an occupied energy level		
4	В	77	 ■ A sulphur is a non-metal which forms molecules of S₈ with covalent bonds □ B copper is a metal which contains metallic bonding ■ C oxygen is a non-metal which forms molecules of O₂ with covalent bonds ■ D hydrogen is a non-metal which forms molecules of H₂ with covalent bonds 		
5	В	78	 ☑A ionic compounds contain at least one metal and one non-metal in compound ☑B monatomic substances are single atoms with no bonds between them ☑C covalent network compounds e.g. SiO₂ are compounds with many covalent bonds ☑D covalent molecular compounds e.g. H₂O are compounds with covalent bonds inside 		
6	С	80	 ■A covalent molecular as no conductivity and low mpt/bpt ■B covalent as no conductivity (unclear if network or molecular from mpt) □C ionic bonding as no conductivity as solid but conductivity as a liquid ■D metallic bonding as conductivity as both solid and liquid 		
7	A	45	☑A silver (I) oxide has the formula Ag ₂ O ☑B silver (II) oxide has the formula AgO ☑C silver (III) oxide has the formula Ag ₂ O ₃ ☑D silver (IV) oxide has the formula AgO ₂		
8	С		☑A tin is metal, tin oxide is insoluble ∴ no effect on pH ☑B zinc is a metal, zinc oxide is insoluble ∴ no effect on pH ☑C sulphur is a non-metal, sulphur dioxide is a soluble non-metal oxide ∴pH<7 (acid) ☑D sodium is a metal, sodium oxide is a soluble metal oxide ∴pH >7 (alkali)		
9	В	63	☑A carbon (soot) is formed by incomplete combustion in a limited supply of air ☑B carbon dioxide & water formed by complete combustion in plentiful supply of air ☑C carbon monoxide is formed by incomplete combustion in a limited supply of air ☑D hydrogen is formed by incomplete combustion in a limited supply of air		
10	С	79	$\blacksquare A$ C_4H_8 fits the general formula C_nH_{2n} but C_3H_8 fits the general formula C_nH_{2n+2} $\blacksquare B$ C_4H_8 fits the general formula C_nH_{2n+2} $\blacksquare C_3H_8$ fits the general formula C_nH_{2n+2} $\blacksquare C_5H_{10}$ fits the general formula C_nH_{2n} but C_3H_8 fits the general formula C_nH_{2n+2}		
11	В	75	$oxed{\mathbb{E}} A$ side groups cannot be placed on C_1 (side groups must be on middle carbons) $oxed{\mathbb{E}} B$ 5 carbons in main chain with $C=C$ bon between C_1 & C_2 and $-CH_3$ groups on C_2 & C_3 $oxed{\mathbb{E}} C$ $C=C$ double bond must be given lowest numbering system $oxed{\mathbb{E}} D$ same numbering system must be used at all times (starting on right here)		
12	В	61	$oxedsymbol{\boxtimes} A$ but-1-ene shown is exact same structure as right isomer at top of question $oxedsymbol{\boxtimes} B$ same formula (C_4H_8) but different structure (methylpropene) $oxedsymbol{\boxtimes} C$ cyclobutene C_4H_6 has a different formula from butene C_4H_8 $oxedsymbol{\boxtimes} D$ pent-1,4-diene C_5H_8 has a different formula to butene C_4H_8		

13	Α	49		H O	10 01001101 5100	НУL	
14	C	82	☑A flash point of octane is 15°C ∴ octane does not ignite at 0°C ☑B hexene and cyclohexane have same molecular mass but different flash points ☑C as boiling point increases, flash point increases ☑D as number of carbons increases, the flash point increases				
15	D	64	Method Metals Made This Way Reason	Electrolysis Potassium Sodium Lithium Calcium Magnesium Aluminium most reactive metals	Heat With Carbon Zinc Iron Nickel Tin Lead Copper medium reactive metals	Heat Alone Mercury Silver Gold Platinum least reactive metals	
16	D	20	 ☑A polyesters are made from two monomers (diacid and diol) ☑B addition monomers contain unsaturated C=C double bonds ☑C monomers with one functional group do not extend the length of the polymer ☑D each monomer in polyester has two functional groups (diacid and diol) 				
17	A	70	☑A a radioisotope which is alpha emitting and has a long half life ☑B gamma rays are too penetrating to be stopped by a smoke ☑C a smoke detector with a short half life would need to be replace too often ☑D gamma rays are too penetrating to be stopped by a smoke				
18	A	50		$_{90}^{234}$ Th \longrightarrow	²³⁴ ₉₁ Pa + ⁰ ₋₁ e		
19	С	45		Time (years) 0 5600 11200	% ¹⁴ C Content 100 50 25		
20	В	50	☑B turns cloudy as 遂C no precipitate	as lithium carbonate s insoluble calcium ca as sodium carbonate as ammonium carbon	rbonate precipitate is is soluble	formed	

2016 National 5 Chemistry Marking Scheme							
Long Qu	Answer	Reasoning					
1 a(i)	1 0	Particle Location Charge Mass Proton in nucleus +1 1 amu					
1a(ii)	Electron -1	Neutron in nucleus 0 1 amu Electron outside nucleus -1 approx zero					
1b	14.5	Relative atomic mass is the average mass of the different isotopes of the same element in a sample. As there are equal quantities of ¹⁴ N and ¹⁵ N in the sample, the RAM is half way between 14 and 15.					
1c(i)	pyramidal	HCI H2O NH3 CH4 H H Iinear angular trigonal pyramidal tetrahedral					
1c(ii)	Haber Process	Nitrogen + Hydrogen iron catalyst ➤ Ammonia					
2a	H H H H H H	H H H H H H H H H H H H H H H H H H H					
2b	H CN 	H H CN H CN H H CN C=C C=C -C-C-C H C6H5 H COOCH3 H C6H5 H COOCH3 Monomer 1 Monomer 2 Co-polymer					
3a	Exothermic	Exothermic Chemical reaction where heat energy is released to surroundings (temperature of the surroundings increases) Endothermic Chemical reaction where heat energy is absorbed from surroundings (temperature of the surroundings decreases)					
3b(i)	0.85	Rate = $\frac{\Delta quantity}{\Delta time} = \frac{29 - 12}{30 - 10} = \frac{17}{20} = 0.85 \text{ cm}^3 \text{ s}^{-1}$					
3b(ii)	60	Maximum volume of hydrogen released = 37cm³ Time at which 37cm³ is achieved = 60s					
3b(iii)	increased reaction rate	Zinc powder has a lower particle size than zinc lumps Lower the particle size the faster the chemical reaction.					
3c(i)	2AI(NO ₃)	2AI + 6HNO ₃ \longrightarrow 2AI(NO ₃) ₃ + 3H ₂ metal + acid \longrightarrow salt + hydrogen					
3c(ii)	0.36	$2AI + 6HNO_3 \longrightarrow 2AI(NO_3)_3 + 3H_2$ $2mol 6mol 2mol 3mol 0.015mol$ $1mol gas = 24litres$ $0.015mol gas = 24litres \times \frac{0.015}{1} = 0.36litres$					

4a(i)	Andalusite + Kyanite	Both andalusite and kyanite can both exist at temperature of 400°C but which mineral is dependent on the pressure.				
4a(ii)	Temperature 500 Pressure 4	The only temperature and pressure where all three forms of the mineral exist is the point on the graph where all three minerals intersect i.e. $500^{\circ}C$ and 4 kbar pressure.				
4b	17.3	gfm $Al_2SiO_5 = (2x27) + (1x28) + (5x16) = 54+28+80 = 162g$ % $Si = \frac{\text{total mass of Si}}{\text{gfm } Al_2SiO_5} \times 100 = \frac{28}{162} \times 100 = 17.3\%$				
5α	Does not react with water, air, alkalis and most acids	Problem Solving: retrieval of information from written passage				
5b	118	Mass number = 197 (from passage) Atomic number = 79 (from data booklet) Number of neutrons = mass number - atomic number = 197 - 79 = 118 neutrons				
5c(i)	$CO + O_2 \longrightarrow CO_2$	carbon monoxide + oxygen Formula is derived directly from name (mono = 1) CO + O2 Carbon dioxide Formula is derived directly from name (di = 2) CO2				
5c(ii)	catalyst	A catalyst speeds up a chemical reaction but is not used up in the reaction.				
5d	hydroxide hydrogen	Nanorods are grown in a dilute solution of auric acid: Solution Type Description				
6a(i)	Potassium gives a Element Barium Calcium Copper Lithium Potassium Sodium Strong Flame Colour green orange-red blue-green red lilac yellow red					
6a(ii)	Ammonium contains nitrogen	Fertilisers contain soluble compounds of one or more of the following elements Nitrogen Phosphorus Potassium				
6b	H ₃ PO ₄ + 3NH ₄ OH ↓ (NH ₄) ₃ PO ₄ + 3H ₂ O	$H_3PO_4 + 3NH_4OH \longrightarrow (NH_4)_3PO_4 + 3H_2O$				
7	Open Question answer containing:	3 mark answer Demonstrates a good understanding of the chemistry involved. A good comprehension of the chemistry has provided in a logically correct, including a statement of the principles involved and the application of these to respond to the problem. 2 mark answer Demonstrates a limited understanding of the chemistry involved, making some statement(s) which are relevant to the situation, showing that the problem is understood. Demonstrates a limited understanding of the chemistry involved. The candidate has made some statement(s) which are relevant to the situation, showing that the chemistry within the problem is understood.				
8a	H H H H CH3 H	C=C bond to make each carbon up to four bonds C=C bond to make each carbon up to four bonds C=C bond to make each carbon up to four bonds C=C bond to make each carbon up to four bonds C=C bond to make each carbon up to four bonds C=C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-				
8b	delivery tube	The vapours from the steam distillation pass through the delivery tube into the test tube. The cold surface of the test tube allows the vapours to condense. The essential oils will float on top of the water in the test tube.				

		Bromine adds across a C=C double bond in an addition reaction					
		HH + Br ₂ HH Br Br					
	1.1						
8c(i)	addition	$H-C-C-C=C-H$ \longrightarrow $H-C-C-C-C-H$					
		H-C-C-C-C=C-H → H-C-C-C-C-H					
8c(ii)	C ₁₀ H ₁₆ Br ₄	Limonene has two C=C double bonds and 2 molecules of Br ₂ will be added					
OC (11)		to the limonene molecule: $C_{10}H_{16}$ + $2Br_2$ \longrightarrow $C_{10}H_{16}Br_4$					
0.0	Method A more accurate as heat not lost	It is essential that that heat is not lost during the					
9a	transferring burner	movement of the lit burner under the beaker.					
_	-OH on end increases	The energy released is consistently higher when -OH aroun in an 1st/and					
9b(i)	the energy released	, ,					
	The energy released	Alcohol Propan-1-ol Propan-2-ol Butan-1-ol Pentan-1-ol Pentan-2-ol Hexan-1-ol Hexan-2-ol					
		Energy (kJ) 2021 2005 2676 2661 3329 3315 3984 -					
9b(ii)	3971	Difference 16 15 14 (13)					
		Estimate (kJ) 3971					
9c	55.0	$E_h = cm\Delta T : \Delta T = \frac{E_h}{c \times m} = \frac{23}{(4.18 \times 0.1)} = 55.0^{\circ}C$					
10a	Electrolyte	An electrolyte is a solution containing ions which helps to complete					
	•	a circuit by ions moving to balance the movement of charge					
10km	Arrow showing	Zinc is higher up the electrochemical $Zn(s)$ \rightarrow $Zn(aq)$ + $2e^{-}$					
10b(i)	movement from right to	Cu (aa) · Le · Cu(s)					
	left through wires	from zinc to copper					
10b(ii)	ion/salt bridge Ion bridge is usually filter paper soaked in an ion solution. Ions move						
		through the paper to balance the movement of charge through the wires.					
1000	oxidation	$Br_{2(l)}$ + $2e^{-}$ \longrightarrow $2Br^{-}(aq)$ Reduction					
10c(i)		$SO_3^{2-}(aq) + H_2O(l) \longrightarrow SO_4^{2-}(aq) + 2H^+(aq) + 2e^-$ Oxidation					
		loss of electrons					
	D 60 2- 11 0						
4.0	Br ₂ + SO ₃ ²⁻ + H ₂ O						
10c(ii)	↓	$Br_2 + SO_3^{2-} + H_2O \longrightarrow 2Br^- + SO_4^{2-} + 2H^+$					
10c(ii)	$Br_{2} + SO_{3}^{2-} + H_{2}O$ \downarrow $2Br^{-} + SO_{4}^{2-} + 2H^{+}$	$Br_2 + SO_3^{2-} + H_2O \longrightarrow 2Br^- + SO_4^{2-} + 2H^+$					
	↓ 2Br ⁻ + SO ₄ ²⁻ + 2H ⁺	Carbon (graphite) is a conductor of electricity and electrodes must be					
10c(ii)	↓	Carbon (graphite) is a conductor of electricity and electrodes must be able to conduct electrons from one side to the other is a cell.					
10c(iii)	2Br ⁻ + SO ₄ ²⁻ + 2H ⁺ carbon/graphite	Carbon (graphite) is a conductor of electricity and electrodes must be able to conduct electrons from one side to the other is a cell. One carbon group (methyl CH3-) on left hand side methoxy					
	↓ 2Br ⁻ + SO ₄ ²⁻ + 2H ⁺	Carbon (graphite) is a conductor of electricity and electrodes must be able to conduct electrons from one side to the other is a cell. One carbon group (methyl CH3-) on left hand side methoxy Three carbon group (propyl -CH2CH3CH3) on right hand sidepropane					
10c(iii)	2Br ⁻ + SO ₄ ²⁻ + 2H ⁺ carbon/graphite	Carbon (graphite) is a conductor of electricity and electrodes must be able to conduct electrons from one side to the other is a cell. One carbon group (methyl CH3-) on left hand side methoxy					
10c(iii)	2Br- + SO ₄ 2- + 2H+ carbon/graphite methoxypropane	Carbon (graphite) is a conductor of electricity and electrodes must be able to conduct electrons from one side to the other is a cell. One carbon group (methyl CH3-) on left hand sidepropane Three carbon group (propyl -CH2CH2CH3) on right hand sidepropane Ether Methoxyethane Ethoxyethane Methoxypropane propoxybutane Structural Formula CH3-O-C2H5 C2H5-O-C2H5 CH3-O-C3H7 C3H7-O-C4H9 Molecular Formula C3H6O C4H10O C4H10O C7H16O					
10c(iii)	2Br ⁻ + SO ₄ ²⁻ + 2H ⁺ carbon/graphite	Carbon (graphite) is a conductor of electricity and electrodes must be able to conduct electrons from one side to the other is a cell. One carbon group (methyl CH3-) on left hand sidepropane Three carbon group (propyl -CH2CH2CH3) on right hand sidepropane Ether Methoxyethane Ethoxyethane Methoxypropane propoxybutane Structural Formula CH3-O-C2H5 C2H5-O-C2H5 CH3-O-C3H7 C3H7-O-C4H9 Molecular Formula C3H8O C4H10O C4H10O C7H16O If n=3 If n=4 If n=4 If n=7					
10c(iii)	2Br- + SO ₄ 2- + 2H+ carbon/graphite methoxypropane	Carbon (graphite) is a conductor of electricity and electrodes must be able to conduct electrons from one side to the other is a cell. One carbon group (methyl CH₃-) on left hand side ∴ methoxy Three carbon group (propyl -CH₂CH₂CH₃) on right hand side ∴propane Ether Methoxyethane Ethoxyethane Methoxypropane propoxybutane Structural Formula CH₃-O-C₂H₅ C₂H₅-O-C₂H₅ CH₃-O-C₃H₁ C₃H₁-O-C₄Hゅ Molecular Formula C₃H₀O C₄H₁OO C₂H₁₀O C₁H₁₀O If n=3 If n=4 If n=7 General Formula 2n+2 = (2x3)+2 = 8 2n+2 = (2x4)+2 = 10 2n+2 = (2x4)+2 = 10 2n+2 = (2x7)+2 = 16					
10c(iii)	2Br- + SO ₄ ²⁻ + 2H+ carbon/graphite methoxypropane C _n H _{2n+2} O	Carbon (graphite) is a conductor of electricity and electrodes must be able to conduct electrons from one side to the other is a cell. One carbon group (methyl CH_{3-}) on left hand sidepropane Three carbon group (propyl - $CH_2CH_2CH_3$) on right hand sidepropane Ether Methoxyethane Ethoxyethane Methoxypropane propoxybutane Structural Formula $CH_{3-}O-C_2H_5$ $C_2H_5-O-C_2H_5$ $CH_{3-}O-C_3H_7$ $C_3H_7-O-C_4H_9$ Molecular Formula C_3H_8O $C_4H_{10}O$ $C_4H_{10}O$ $C_7H_{16}O$ If n=3 If n=4 If n=7 General Formula $C_3H_3C_3C_3C_3C_3C_3C_3C_3C_3C_3C_3C_3C_3C_$					
10c(iii) 11a 11b	2Br- + SO ₄ 2- + 2H+ carbon/graphite methoxypropane	Carbon (graphite) is a conductor of electricity and electrodes must be able to conduct electrons from one side to the other is a cell. One carbon group (methyl CH_{3-}) on left hand sidepropane Three carbon group (propyl - $CH_2CH_2CH_3$) on right hand sidepropane Ether Methoxyethane Ethoxyethane Methoxypropane propoxybutane Structural Formula $CH_{3-}O-C_2H_5$ $C_2H_5-O-C_2H_5$ $CH_{3-}O-C_3H_7$ $C_3H_7-O-C_4H_9$ Molecular Formula C_3H_8O $C_4H_{10}O$ $C_4H_{10}O$ $C_7H_{16}O$ Molecular Formula C_3H_8O $C_4H_{10}O$ $C_4H_{10}O$ $C_7H_{16}O$ General Formula $C_1C_1C_1C_1C_1C_1C_1C_1C_1C_1C_1C_1C_1C$					
10c(iii)	2Br- + SO ₄ ²⁻ + 2H+ carbon/graphite methoxypropane C _n H _{2n+2} O	Carbon (graphite) is a conductor of electricity and electrodes must be able to conduct electrons from one side to the other is a cell. One carbon group (methyl CH_{3-}) on left hand sidepropane Three carbon group (propyl - $CH_2CH_2CH_3$) on right hand sidepropane Ether Methoxyethane Ethoxyethane Methoxypropane propoxybutane Structural Formula $CH_{3-}O-C_2H_5$ $C_2H_5-O-C_2H_5$ $CH_{3-}O-C_3H_7$ $C_3H_7-O-C_4H_9$ Molecular Formula C_3H_8O $C_4H_{10}O$ $C_4H_{10}O$ $C_7H_{16}O$ If n=3 If n=4 If n=7 General Formula $C_1+C_1+C_1+C_1+C_1+C_1+C_1+C_1+C_1+C_1+$					
10c(iii) 11a 11b	2Br- + SO ₄ ²⁻ + 2H+ carbon/graphite methoxypropane C _n H _{2n+2} O	Carbon (graphite) is a conductor of electricity and electrodes must be able to conduct electrons from one side to the other is a cell. One carbon group (methyl CH_{3-}) on left hand sidepropane Three carbon group (propyl - $CH_2CH_2CH_3$) on right hand sidepropane Ether Methoxyethane Ethoxyethane Methoxypropane propoxybutane Structural Formula $CH_{3-}O-C_2H_5$ $C_2H_5-O-C_2H_5$ $CH_{3-}O-C_3H_7$ $C_3H_7-O-C_4H_9$ Molecular Formula C_3H_8O $C_4H_{10}O$ $C_4H_{10}O$ $C_7H_{16}O$ Molecular Formula C_3H_8O $C_4H_{10}O$ $C_4H_{10}O$ $C_7H_{16}O$ General Formula $C_1C_1C_1C_1C_1C_1C_1C_1C_1C_1C_1C_1C_1C$					
10c(iii) 11a 11b	2Br- + SO ₄ ²⁻ + 2H+ carbon/graphite methoxypropane C _n H _{2n+2} O weak	Carbon (graphite) is a conductor of electricity and electrodes must be able to conduct electrons from one side to the other is a cell. One carbon group (methyl CH_{3-}) on left hand sidepropane $\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
10c(iii) 11a 11b	2Br- + SO ₄ ²⁻ + 2H+ carbon/graphite methoxypropane C _n H _{2n+2} O weak	Carbon (graphite) is a conductor of electricity and electrodes must be able to conduct electrons from one side to the other is a cell. One carbon group (methyl CH_{3-}) on left hand sidepropane Three carbon group (propyl - $CH_2CH_2CH_3$) on right hand sidepropane Ether Methoxyethane Ethoxyethane Methoxypropane propoxybutane Structural Formula $CH_{3-}O-C_2H_5$ $C_2H_5-O-C_2H_5$ $CH_{3-}O-C_3H_7$ $C_3H_7-O-C_4H_9$ Molecular Formula C_3H_8O $C_4H_{10}O$ $C_4H_{10}O$ $C_7H_{16}O$ If n=3 If n=4 If n=7 General Formula $C_1+C_1+C_1+C_1+C_1+C_1+C_1+C_1+C_1+C_1+$					

11d(ii)	H C C H H H	Epoxides have a ring of three atoms but one of the three atoms in the ring must be the oxygen resulting in the third carbon being outside the ring.				
12a	Hydroxyl group	—O	P—H O O O O O O O O O O	H		
12b	Weak Acid Strong Base	Betanin is the indicator use pH range of colour change = 9.0 - 10.0 pH at end point is above 7 weak acid and strong base used in reaction (sodium hydroxide)				
12c	15.0cm ³	Average Volume = $\frac{14.9 + 15.1}{2} = \frac{30.0}{2} = 15.0 \text{cm}^3$ NB: Ignore rough titre in the calculation of the average volume as it is inaccurate				
12d	0.02	no. of mol = $\frac{\text{mass}}{\text{gfm}} = \frac{1.8}{90} = 0.02 \text{ mol}$				
13	Open Question answer containing:	3 mark answer Demonstrates a good understanding of the chemistry involved. A good comprehension of the chemistry has provided in a logically correct, including a statement of the principles involved and the application of these to respond to the problem.	2 mark answer Demonstrates a <u>reasonable</u> understanding of the chemistry involved, making some statement(s) which are relevant to the situation, showing that the problem is understood.	1 mark answer Demonstrates a limited understanding of the chemistry involved. The candidate has made some statement(s) which are relevant to the situation, showing that at least a little of the chemistry within the problem is understood.		